首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446831篇
  免费   55378篇
  国内免费   275篇
  2018年   3821篇
  2017年   3506篇
  2016年   5459篇
  2015年   8170篇
  2014年   9154篇
  2013年   12871篇
  2012年   14840篇
  2011年   14949篇
  2010年   9871篇
  2009年   9129篇
  2008年   13046篇
  2007年   13525篇
  2006年   12227篇
  2005年   12037篇
  2004年   11804篇
  2003年   11244篇
  2002年   10733篇
  2001年   21606篇
  2000年   21728篇
  1999年   17249篇
  1998年   6041篇
  1997年   6281篇
  1996年   6070篇
  1995年   5686篇
  1994年   5745篇
  1993年   5562篇
  1992年   13636篇
  1991年   12956篇
  1990年   12628篇
  1989年   12487篇
  1988年   11155篇
  1987年   10777篇
  1986年   9861篇
  1985年   9642篇
  1984年   8178篇
  1983年   7062篇
  1982年   5519篇
  1981年   4996篇
  1980年   4644篇
  1979年   7679篇
  1978年   5910篇
  1977年   5421篇
  1976年   5056篇
  1975年   5359篇
  1974年   5803篇
  1973年   5653篇
  1972年   5095篇
  1971年   4725篇
  1970年   3920篇
  1969年   3848篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.  相似文献   
62.
63.
Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS), an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α), corticosterone, and brain-derived neurotrophic factor (BDNF) plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.  相似文献   
64.
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.  相似文献   
65.
A major complication of peritoneal dialysis is the development of peritonitis, which is associated with reduced technique and patient survival. The inflammatory response elicited by infection results in a fibrin and debris-rich environment within the peritoneal cavity, which may reduce the effectiveness of antimicrobial agents and predispose to recurrence or relapse of infection. Strategies to enhance responses to antimicrobial agents therefore have the potential to improve patient outcomes. This study presents pre-clinical data describing the compatibility of tPA and DNase in combination with antimicrobial agents used for the treatment of PD peritonitis. tPA and DNase were stable in standard dialysate solution and in the presence of antimicrobial agents, and were safe when given intraperitoneally in a mouse model with no evidence of local or systemic toxicity. Adjunctive tPA and DNase may have a role in the management of patients presenting with PD peritonitis.  相似文献   
66.
The effect of implants’ number on overdenture stability and stress distribution in edentulous mandible, implants and overdenture was numerically investigated for implant-supported overdentures. Three models were constructed. Overdentures were connected to implants by means of ball head abutments and rubber ring. In model 1, the overdenture was retained by two conventional implants; in model 2, by four conventional implants; and in model 3, by five mini implants. The overdenture was subjected to a symmetrical load at an angle of 20 degrees to the overdenture at the canine regions and vertically at the first molars. Four different loading conditions with two total forces (120, 300 N) were considered for the numerical analysis. The overdenture displacement was about 2.2 times higher when five mini implants were used rather than four conventional implants. The lowest stress in bone bed was observed with four conventional implants. Stresses in bone were reduced by 61% in model 2 and by 6% in model 3 in comparison to model 1. The highest stress was observed with five mini implants. Stresses in implants were reduced by 76% in model 2 and 89% increased in model 3 compared to model 1. The highest implant displacement was observed with five mini implants. Implant displacements were reduced by 29% in model 2, and increased by 273% in model 3 compared to model 1. Conventional implants proved better stability for overdenture than mini implants. Regardless the type and number of implants, the stress within the bone and implants are below the critical limits.  相似文献   
67.
Accuracy of predicting genomic breeding values for carcass merit traits including hot carcass weight, longissimus muscle area (REA), carcass average backfat thickness (AFAT), lean meat yield (LMY) and carcass marbling score (CMAR) was evaluated based on 543 Angus and 400 Charolais steers genotyped on the Illumina BovineSNP50 Beadchip. For the genomic prediction within Angus, the average accuracy was 0.35 with a range from 0.32 (LMY) to 0.37 (CMAR) across different training/validation data‐splitting strategies and statistical methods. The within‐breed genomic prediction for Charolais yielded an average accuracy of 0.36 with a range from 0.24 (REA) to 0.46 (AFAT). The across‐breed prediction had the lowest accuracy, which was on average near zero. When the data from the two breeds were combined to predict the breeding values of either breed, the prediction accuracy averaged 0.35 for Angus with a range from 0.33 (REA) to 0.39 (CMAR) and averaged 0.33 for Charolais with a range from 0.18 (REA) to 0.46 (AFAT). The prediction accuracy was slightly higher on average when the data were split by animal's birth year than when the data were split by sire family. These results demonstrate that the genetic relationship or relatedness of selection candidates with the training population has a great impact on the accuracy of predicting genomic breeding values under the density of the marker panel used in this study.  相似文献   
68.
Little is known about the simultaneous effects of drought stress and plant resistance on herbivorous insects. By subjecting the green peach aphid Myzus persicae Sulzer to well‐watered and drought‐stressed plants of both susceptible and resistant peach (Prunus persica), the effects of both stressors on aphid performance and proteomics are tested. Overall, the influence of the water treatment on aphid performance is less pronounced than the effect of host plant genetic resistance. On the susceptible cultivar, aphid survival, host acceptance and ability to colonize the plant do not depend on water treatment. On the resistant cultivar, aphid survival and ability to colonize are higher on drought‐stressed than on well‐watered plants. A study examining the pattern of protein expression aiming to explain the variation in aphid performance finds higher protein expression in aphids on the drought‐stressed susceptible cultivars compared with the well‐watered ones. In the susceptible cultivar, the regulated proteins are related to energy metabolism and exoskeleton functionality, whereas, in the resistant cultivar, the proteins are involved with the cytoskeleton. Comparison of the protein expression ratios for resistant versus susceptible plants reveals that four proteins are down‐regulated in well‐watered plants and 15 proteins are down‐regulated in drought‐stressed plants. Drought stress applied to the susceptible cultivar induces the regulation of proteins in M. persicae that enable physiological adaptation to maintain an almost unaltered aphid performance. By contrast, for aphids on the resistant cultivar subjected to drought stress, the down‐regulation of proteins responds to an induced host susceptibility effect.  相似文献   
69.
70.
Alzheimer’s disease (AD) is a leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles (NFTs) and neuronal dysfunction. Early onset AD (EOAD) is commonly caused by mutations in amyloid precursor protein (APP) or genes involved in the processing of APP including the presenilins (e.g. PSEN1 or PSEN2). In general, mouse models relevant to EOAD recapitulate amyloidosis, show only limited amounts of NFTs and neuronal cell dysfunction and low but significant levels of seizure susceptibility. To investigate the effect of genetic background on these phenotypes, we generated APPswe and PSEN1de9 transgenic mice on the seizure prone inbred strain background, DBA/2J. Previous studies show that the DBA/2J genetic background modifies plaque deposition in the presence of mutant APP but the impact of PSEN1de9 has not been tested. Our study shows that DBA/2J.APPswePSEN1de9 mice are significantly more prone to premature lethality, likely to due to lethal seizures, compared to B6.APPswePSEN1de9 mice—70% of DBA/2J.APPswePSEN1de9 mice die between 2-3 months of age. Of the DBA/2J.APPswePSEN1de9 mice that survived to 6 months of age, plaque deposition was greatly reduced compared to age-matched B6.APPswePSEN1de9 mice. The reduction in plaque deposition appears to be independent of microglia numbers, reactive astrocytosis and complement C5 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号